This lecture note covers the
following topics in surface modeling: b-splines, non-uniform rational b-splines,
physically based deformable surfaces, sweeps and generalized cylinders, offsets,
blending and filleting surfaces, Non-linear solvers and intersection problems,
Solid modeling: constructive solid geometry, boundary representation,
non-manifold and mixed-dimension boundary representation models, octrees,
Robustness of geometric computations, Interval methods, Finite and boundary
element discretization methods for continuum mechanics problems, Scientific
visualization, Variational geometry, Tolerances and Inspection methods.
Author(s): Prof.
Nicholas Patrikalakis and Prof. Takashi Maekawa
This PDF book covers the following topics
related to Geometry : Introduction, Construction of the Euclidean plane,
Transformations, Tricks of the trade, Concurrence and collinearity, Circular
reasoning, Triangle trivia, Quadrilaterals, Geometric inequalities, Inversive
and hyperbolic geometry, Projective geometry.
This lecture note explains the following topics:
Polygons, Convex Hull, Plane Graphs and the DCEL, Line Sweep, The
Configuration Space Framework, Voronoi Diagrams, Trapezoidal Maps,
Davenport-Schinzel Sequences and Epsilon Nets.
This text is intended for a brief
introductory course in plane geometry. It covers the topics from elementary
geometry that are most likely to be required for more advanced mathematics
courses. Topics covered includes: Lines Angles and Triangles, m Congruent
Triangles, Quadrilaterals, Similar Triangles, Trigonometry of The Right
Triangle, Area and Perimeter, Regular Polygons and Circles, Values of The
Trigonometric Functions.
This is a great mathematics book cover the following topics:
Equilateral Triangle, Perpendicular Bisector, Angle Bisector, Angle Made by
Lines, The Regular Hexagon, Addition and Subtraction of Lengths, Addition and
Subtraction of Angles, Perpendicular Lines, Parallel Lines and Angles,
Constructing Parallel Lines, Squares and Other Parallelograms, Division of a
Line Segment into Several Parts, Thales' Theorem, Making Sense of Area, The Idea
of a Tiling, Euclidean and Related Tilings, Islamic Tilings.
This
is an introductory note in generalized geometry, with a special emphasis on
Dirac geometry, as developed by Courant, Weinstein, and Severa, as well as
generalized complex geometry, as introduced by Hitchin. Dirac geometry is based
on the idea of unifying the geometry of a Poisson structure with that of a
closed 2-form, whereas generalized complex geometry unifies complex and
symplectic geometry.