This note introduces the concepts of measures, measurable functions and
Lebesgue integrals. Topics covered includes: Measurable functions / random
variables , Dynkin’s Lemma and the Uniqueness Theorem, Borel-Cantelli’s First
Lemma, Independent random variables, Kolmogorov’s 0-1-law, Integration of
nonnegative functions , Jordan-Hahn Decompositions, The Lebesgue-Radon-Nikodym
Theorem, The law of large numbers.
The contents of this book
include: Integrals, Applications of Integration, Differential Equations,
Infinite Sequences and Series, Hyperbolic Functions, Various Formulas, Table of
Integrals.
This graduate-level lecture
note covers Lebesgue's integration theory with applications to analysis,
including an introduction to convolution and the Fourier transform.
This book describes the following
topics: Elementary functions and their classification, The integration of
elementary functions, The integration of rational functions, The integration of
algebraical functions and The integration of transcendental functions.
This lecture note explains the following topics: The integral:
properties and construction, Function spaces, Probability, Random walk and
martingales, Radon integrals.