Differential Equations Books

# Introduction to Differential Equations

## Introduction to Differential Equations

Introduction to Differential Equations

This book covers the following topics: Introduction to odes, First-order odes, Second-order odes, constant coefficients, The Laplace transform, Series solutions, Systems of equations, Nonlinear differential equations, Partial differential equations.

Author(s):

128 Pages
##### Similar Books

Ordinary Differential Equations by Gabriel Nagy

This book explains the following topics: First Order Equations, Second Order Linear Equations, Reduction of Order Methods, Homogenous Constant Coefficients Equations ,Power Series Solutions, The Laplace Transform Method, Systems of Linear Differential Equations, Autonomous Systems and Stability, Boundary Value Problems.

431 Pages

Differential Equations Jeffrey R. Chasnov

The contents of this book include: A short mathematical review, Introduction to odes, First-order odes , Second-order odes, constant coefficients, The Laplace transform, Series solutions, Systems of equations, Nonlinear differential equations, Partial differential equations.

149 Pages

Elementary Differential Equations

This note covers the following topics: First Order Equations, Numerical Methods, Applications of First Order Equations, Linear Second Order Equations, Applcations of Linear Second Order Equations, Series Solutions of Linear Second Order Equations, Laplace Transforms, Linear Higher Order Equations.

663 Pages

Ordinary Differential Equations by Gabriel Nagy

This note describes the main ideas to solve certain differential equations, such us first order scalar equations, second order linear equations, and systems of linear equations. It uses power series methods to solve variable coefficients second order linear equations. Also introduces Laplace transform methods to find solutions to constant coefficients equations with generalized source functions.

431 Pages

Ordinary Differential Equation by Alexander Grigorian

This note covers the following topics: Notion of ODEs, Linear ODE of 1st order, Second order ODE, Existence and uniqueness theorems, Linear equations and systems, Qualitative analysis of ODEs, Space of solutions of homogeneous systems, Wronskian and the Liouville formula.

133 Pages

Differential Equations for Engineers

This note covers the following topics: The trigonometric functions, The fundamental theorem of calculus, First-order odes, Second-order odes, constant coefficients, The Laplace transform, Series solutions, Systems of equations, Nonlinear differential equations, Partial differential equations.

149 Pages

Ordinary Differential Equations For Engineers

This note describes the following topics: First Order Differential Equations, N-th Order Differential Equations, Linear Differential Equations, Laplace Transforms, Inverse Laplace Transform, Systems Of Linear Differential Equations, Series Solution Of Linear Differential Equations.

147 Pages

Ordinary Differential Equation Notes by S. Ghorai

This note covers the following topics: Geometrical Interpretation of ODE, Solution of First Order ODE, Linear Equations, Orthogonal Trajectories, Existence and Uniqueness Theorems, Picard's Iteration, Numerical Methods, Second Order Linear ODE, Homogeneous Linear ODE with Constant Coefficients, Non-homogeneous Linear ODE, Method of Undetermined Coefficients, Non-homogeneous Linear ODE, Method of Variation of Parameters, Euler-Cauchy Equations, Power Series Solutions: Ordinary Points, Legendre Equation, Legendre Polynomials, Frobenius Series Solution, Regular Singular Point, Bessle Equation, Bessel Function, Strum Comparison Theorem, Orthogonality of Bessel Function, Laplace Transform, Inverse Laplace Transform, Existence and Properties of Laplace Transform, Unit step function, Laplace Transform of Derivatives and Integration, Derivative and Integration of Laplace Transform, Laplace Transform of Periodic Functions, Convolution, Applications.

NA Pages