Introduction to Functional Analysis Part III, Autumn 2004
Introduction to Functional Analysis Part III, Autumn 2004
Introduction to Functional Analysis Part III, Autumn 2004
This note covers the following topics: Baire category, Non-existence of
functions of several variables, The principle of uniform boundedness, Zorn's
lemma and Tychonov's theorem, The Hahn-Banach theorem, Banach algebras, Maximal
ideals, Analytic functions, The Gelfand representation.
This note covers the following topics: Principles of Functional Analysis,
The Weak and Weak Topologies, Fredholm Theory, Spectral Theory, Unbounded
Operators, Semigroups of Operators.
Author(s): Theo Buhler and Dietmar A. Salamon, ETH
Zurich
Functional analysis plays an important
role in the applied sciences as well as in mathematics itself. These notes are intended to familiarize the student with the basic
concepts, principles andmethods of functional analysis and its applications, and
they are intended for senior undergraduate or beginning graduate students.
Topics covered includes: Normed and Banach spaces, Continuous maps,
Differentiation, Geometry of inner product spaces , Compact operators and
Approximation of compact operators.
This note explains
the following topics: Metric and topological spaces, Banach spaces, Consequences
of Baire's Theorem, Dual spaces and weak topologies, Hilbert spaces, Operators
in Hilbert spaces, Banach algebras, Commutative Banach algebras, and Spectral
Theorem.