This
note in number theory explains standard topics in algebraic and analytic number
theory. Topics covered includes: Absolute values and discrete valuations,
Localization and Dedekind domains, ideal class groups, factorization of ideals,
Etale algebras, norm and trace, Ideal norms and the Dedekind-Kummer
thoerem, Galois extensions, Frobenius elements, Complete fields and valuation
rings, Local fields and Hensel's lemmas , Extensions of complete DVRs,
Totally ramified extensions and Krasner's lemma , Dirichlet's unit theorem,
Riemann's zeta function and the prime number theorem, The functional equation ,
Dirichlet L-functions and primes in arithmetic progressions, The analytic class
number formula, The Kronecker-Weber theorem, Class field theory, The main
theorems of global class field theory, Tate cohomology, profinite groups,
infinite Galois theory, Local class field theory, Global class field theory and
the Chebotarev density theorem.
This note explains the following topics: Integral ring extensions, Ideals of Dedekind rings, Finiteness
of the class number, Dirichlets unit theorem, Splitting and ramification,
Cyclotomic fields, Valuations and local fields, The theorem of Kronecker
weber.
This PDF covers the
following topics related to Number Theory : Divisibility, Prime Numbers, The
Linear Diophantine Equation , Congruences, Linear Congruences, The Chinese
Remainder Theorem, Public-Key Cryptography, Pseudoprimes, Polynomial
Congruences with Prime Moduli, Polynomial Congruences with Prime Power
Moduli, The Congruence, General Quadratic Congruences, The Legendre Symbol
and Gauss’ Lemma, Quadratic Reciprocity, Primitive Roots, Arithmetic
Functions, Sums of Squares, Pythagorean Triples, Fermat’s Last Theorem,
Continued Fractions, Simple Continued Fractions, Rational Approximations to
Irrational Numbers, Periodic Continued Fractions, Continued Fraction
Expansion, Pell’s Equation.
This lecture note is
an elementary introduction to number theory with no algebraic prerequisites.
Topics covered include primes, congruences, quadratic reciprocity, diophantine
equations, irrational numbers, continued fractions, and partitions.