Mathematics Books Mathematical-Analysis BooksFourier Analysis Books

The Fourier Transform and applications

The Fourier Transform and applications

The Fourier Transform and applications

Currently this section contains no detailed description for the page, will update this page soon.

Author(s):

sNA Pages
Similar Books
Notes on Fourier Analysis byJeffrey Chang

Notes on Fourier Analysis byJeffrey Chang

This page covers the following topics related to Fourier Analysis : Introduction, Fourier Series, Periodicity, Monsieur Fourier, Finding Coefficients, Interpretation, Hot Rings, Orthogonality, Fourier Transforms, Motivation, Inversion and Examples, Duality and Symmetry, Scaling and Derivatives, Convolution.

sNA Pages
A Quick Introduction to Fourier Analysis by UCF

A Quick Introduction to Fourier Analysis by UCF

This PDF covers the following topics related to Fourier Analysis : Introduction, The Dirac Delta Function, The Fourier Transform, Fourierís Theorem, Some Common Fourier Transforms, Properties of the Fourier Transform, Greenís Function for ODE, The Airy Function, The Heat Equation, The Wave Equation, The Fourier Series 16 4.1 Derivation, Properties of Fourier Series, The Heat Equation, Poisson Summation, Parsevalís Identity, The Fourier Transform, Causal Greenís Functions , Poissonís Equation, The Brane World and Large Extra Dimensions, Appendix: Some Mathematical Niceties.

s48 Pages
An Introduction to Fourier Analysis Fourier Series, Partial Differential Equations and Fourier Transforms

An Introduction to Fourier Analysis Fourier Series, Partial Differential Equations and Fourier Transforms

This note explains the following topics: Infinite Sequences, Infinite Series and Improper Integrals, Fourier Series, The One-Dimensional Wave Equation, The Two-Dimensional Wave Equation, Fourier Transform, Applications of the Fourier Transform, Besselís Equation.

s182 Pages
Fourier Analysis and Related Topics

Fourier Analysis and Related Topics

Aim of this note is to provide mathematical tools used in applications, and a certain theoretical background that would make other parts of mathematical analysis accessible to the student of physical science. Topics covered includes: Power series and trigonometric series, Fourier integrals, Pointwise convergence of Fourier series, Summability of Fourier series, Periodic distributions and Fourier series, Metric, normed and inner product spaces, Orthogonal expansions and Fourier series, Classical orthogonal systems and series, Eigenvalue problems related to differential equations, Fourier transformation of well-behaved functions, Fourier transformation of tempered distributions, General distributions and Laplace transforms.

s341 Pages
Fourier Analysis by Gustaf Gripenberg

Fourier Analysis by Gustaf Gripenberg

This lecture note explains the following topics: Integration theory, Finite Fourier Transform, Fourier Integrals, Fourier Transforms of Distributions, Fourier Series, The Discrete Fourier Transform and The Laplace Transform.

s137 Pages
Lecture Notes in Fourier Analysis by Mohammad Asadzsdeh

Lecture Notes in Fourier Analysis by Mohammad Asadzsdeh

This book is an introduction to Fourier analysis and related topics with applications in solving linear partial differential equations, integral equations as well as signal problems.

s342 Pages
The Fourier Transform and its Applications

The Fourier Transform and its Applications

This book covers the following topics: Fourier Series, Fourier Transform, Convolution, Distributions and Their Fourier Transforms, Sampling, and Interpolation, Discrete Fourier Transform, Linear Time-Invariant Systems, n-dimensional Fourier Transform.

s428 Pages
Introduction to the theory of Fourier's series and integrals

Introduction to the theory of Fourier's series and integrals

This book describes the Theory of Infinite Series and Integrals, with special reference to Fourier's Series and Integrals. The first three chapters deals with limit and function, and both are founded upon the modern theory of real numbers. In Chapter IV the Definite Integral is treated from Kiemann's point of view, and special attention is given to the question of the convergence of infinite integrals. The theory of series whose terms are functions of a single variable, and the theory of integrals which contain an arbitrary parameter are discussed in Chapters, V and VI.

s410 Pages
Fourier Transform   Materials Analysis

Fourier Transform Materials Analysis

This book focuses on the material analysis based on Fourier transform theory. The book chapters are related to FTIR and the other methods used for analyzing different types of materials.

s260 Pages
Fourier Transforms   New Analytical Approaches and FTIR Strategies

Fourier Transforms New Analytical Approaches and FTIR Strategies

New analytical strategies and techniques are necessary to meet requirements of modern technologies and new materials. In this sense, this book provides a thorough review of current analytical approaches, industrial practices, and strategies in Fourier transform application.

s520 Pages
Distribution Theory (Generalized Functions)   Notes

Distribution Theory (Generalized Functions) Notes

This note covers the following topics: The Fourier transform, Convolution, Fourier-Laplace Transform, Structure Theorem for distributions and Partial Differential Equation.

s66 Pages
Three Introductory Lectures on Fourier Analysis and Wavelets

Three Introductory Lectures on Fourier Analysis and Wavelets

This note covers the following topics: Vector Spaces with Inner Product, Fourier Series, Fourier Transform, Windowed Fourier Transform, Continuous wavelets, Discrete wavelets and the multiresolution structure, Continuous scaling functions with compact support.

s59 Pages
Fourier Analysis 1

Fourier Analysis 1

This note provides an introduction to harmonic analysis and Fourier analysis methods, such as Calderon-Zygmund theory, Littlewood-Paley theory, and the theory of various function spaces, in particular Sobolev spaces. Some selected applications to ergodic theory, complex analysis, and geometric measure theory will be given.

sNA Pages
FOURIER ANALYSIS Part I Yu. Safarov

FOURIER ANALYSIS Part I Yu. Safarov

This note covers the following topics: Series expansions, Definition of Fourier series, Sine and cosine expansions, Convergence of Fourier series, Mean square convergence, Complete orthonormal sets in L2, Fourier transform in L1(R1), Sine and cosine Fourier transforms, Schwartz space S(R1), Inverse Fourier transform, Pointwise inversion of the L1-Fourier transform.

s40 Pages
Fourier Analysis Part II (measure theory, Lebesgue integration, distributions)

Fourier Analysis Part II (measure theory, Lebesgue integration, distributions)

This note covers the following topics: Measures and measure spaces, Lebesgue's measure, Measurable functions, Construction of integrals, Convergence of integrals, Lebesgue's dominated convergence theorem, Comparison of measures, The Lebesgue spaces, Distributions and Operations with distributions.

s30 Pages
Fourier Series

Fourier Series

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages

Advertisement