Mathematical Analysis Books

# Analysis I by Vicky Neale

## Analysis I by Vicky Neale

Analysis I by Vicky Neale

The contents include: Introduction, Axioms for arithmetic in R, Properties of arithmetic in R, Ordering the real numbers, Inequalities and arithmetic, The modulus of a real number, The complex numbers, Upper and lower bounds, Supremum, infimum and completeness, Existence of roots, More consequences of completeness, Countability, More on countability, Introduction to sequences, Convergence of a sequence, Bounded and unbounded sequences, Complex sequences, Subsequences, Orders of magnitude, Monotonic sequences, Convergent subsequences, Cauchy sequences, Convergence for series, More on the Comparison Test, Ratio Test, Integral Test, Power series, Radius of convergence, Differentiation Theorem.

Author(s):

114 Pages
##### Similar Books

Basic Mathematical Analysis by Abdul Rof

This note explains the following topics: preliminaries, The real numbers, Sequences and series, Complex numbers.

129 Pages

Foundations of Mathematical Analysis

This note covers Basic concepts in mathematical analysis and some complements, Real numbers and ordered fields, Cardinality, Topologies, Construction of some special functions.

122 Pages

Mathematical Analysis Lecture Notes by Anil Tas

The contents include: The Real And Complex Number Systems, Sets And Functions, Basic Topology, Sequences And Series, Continuity, Sequences And Series Of Functions, Figures.

90 Pages

Introduction to Mathematical Analysis I

Goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. The lecture notes contain topics of real analysis usually covered in a 10-week course: the completeness axiom, sequences and convergence, continuity, and differentiation. The lecture notes also contain many well-selected exercises of various levels.

NA Pages

Introduction To Mathematical Analysis

This book explains the following topics: Some Elementary Logic, The Real Number System, Set Theory, Vector Space Properties of Rn, Metric Spaces, Sequences and Convergence, Cauchy Sequences, Sequences and Compactness, Limits of Functions, Continuity, Uniform Convergence of Functions, First Order Systems of Differential Equations

284 Pages

The Convenient Setting of Global Analysis

This book covers the following topics: Calculus of smooth mappings, Calculus of holomorphic and real analytic mappings, Partitions of unity, Smoothly realcompact spaces, Extensions and liftings of mappings, Infinite dimensional manifolds, Calculus on infinite dimensional manifolds, Infinite dimensional differential geometry, Manifolds of mappings and Further applications.

NA Pages