Geometric (Clifford) algebra a practical tool for efficient geometric representation
Geometric (Clifford) algebra a practical tool for efficient geometric representation
Geometric (Clifford) algebra a practical tool for efficient geometric representation
This note explans the following topics: Vector space Vn over scalars such
as IR, The clifford geometric products, Inner and outer products, Bivectors in
the standard model, Bivectors in the homogeneous model, Perpendicularity,
Reflection through communication, Duality and subspace representation.
This book covers the following
topics: The inner, outer, and geometric products, Geometric algebra in
Euclidean space, projections, reflections, and rotations, Frames and
bases, Linear algebra.
This note explains new techniques in Geometric Algebra
through their applications, rather than as purely formal mathematics. It
introduces Geometric Algebra as a new mathematical technique to add to your
existing base as a theoretician or experimentalist.