This note describes the
following topics: Quantization, Photons, Free electrons, empty lattice
approximation, Metals, Fermi surfaces, Metals, Fermi surfaces, plane wave
method, tight binding, Graphene, carbon nanotubes, photoemission, Semiconductors, Free electrons in a magnetic field , Landau levels, Quantum Hall
Effect, Landau levels, Linear response theory , Optical properties of
insulators, Optical properties of metals, Boltzmann equation, Thermoelectric
effects, Crystal physics, Structural phase transitions / electron screening,
Single-electron effects, Hubbard model, Peierls transition , Landau's theory of
a Fermi liquid, phonons, Ferroelectrics, piezoelectrics, Landau theory of phase
transition, Superconductivitys.
This note
covers Second quantization, Electrons and phonons, Greens
functions and feynman diagrams, Dielectric function and linear response and
Superconductivity.
This note covers Bravais lattice or how to pack a crystal, Symmetry as the guiding principle,
Systematics of crystals symmetry groups, Unpacking the crystal structure, Spaces
of crystallography, Structure factor, Bonding in crystals, Mechanical
properties, Dielectric properties, Phonons and sound, Phonons and light and
phonons and the reciprocal lattice.
Solid state physics is one of the most
active and versatile branches of modern physics that have developed in the wake
of the discovery of quantum mechanics. It deals with problems concerning the
properties of materials and, more generally, systems with many degrees of
freedom, ranging from fundamental questions to technological applications. The
topics explained in this pdf include:Introduction, Electrons in the periodic
crystal - band structure, Metals, Itinerant electrons in a magnetic field,
Landau’s Theory of Fermi Liquids, Transport properties of metals, Magnetism in
metals, Magnetism of localized moments.
This note covers the following topics: Elasticity, fluctuations and
thermodynamics of crystals, thermodynamics of phonons, Hohenberg-Mermin-Wagner
theorem, Ginzburg-Landau theory and Landau's quantum hydrodynamics, Bosonic
matter, Magnetism in charge insulators, Jordan-Wigner transformation and XXZ
chain, Coherent-spin states and Berry phases, Electron liquid, Fermi gas
thermodynamics, Pauli magnetism, Stoner ferromagnetism.
This note
describes the following topics: Band structure, Transport, Magnetism, Dielectric
function and semiconductor lasers, Quantum kinetics of many-particle systems,
Electron-Electron interaction, Superconductivity.
This note covers the following
topics: The electronic structure: tight-binding method and nearly
free-electron model, Comparison of results for tight-binding and nearly-free
electron model, Formalization: Bloch theorem, Phonons in one dimension,
Periodicity, Effect of a basis on the electronic structure, Crystal structures,
The reciprocal lattice, Tight-binding in two dimensions, Optical spectroscopy,
Quantum-mechanical treatment of optical spectroscopy, Relation to absorption,
Thomas-Fermi screening, Ferromagnetism, Antiferromagnetism, Electron-phonon
interaction, Transition temperature, Ginzburg-Landau theory, Flux quantization
and the Josephson effect.
This note covers the following Topics
includes: Schrodinger Equation, Quantization, Quantization of the
Electromagnetic Field, Photonic Crystals, Phonons, Electrons, Crystal Physics,
Magnetism and Response to Electric and Magnetic Fields, Transport Regimes,
Quasiparticles, Dielectrics and Ferroelectrics, Superconductivity.
Author(s): Michael Mayrhofer-R, Patrick Kraus,
Christoph Heil, Hannes Brandner, Nicola Schlatter, Immanuel Mayrhuber, Stefan
Kirnstötter, Alexander Volk, Gernot Kapper, Reinhold Hetzel