Physics BooksOptics Books

Advances in Lasers and Electro Optics

Advertisement

Advances in Lasers and Electro Optics

Advances in Lasers and Electro Optics

This book is divided in four sections. The book presents several physical effects and properties of materials used in lasers and electro-optics in the first chapter and, in the three remaining chapters, applications of lasers and electro-optics in three different areas are presented.

Author(s):

sNA Pages
Similar Books
Classical and Modern Optics

Classical and Modern Optics

This lecture note covers following topics: Linear Algebra, Ray Optics, Fourier Analysis, Electromagnetic Theory, Interference, Gaussian Beams, Fabry–Perot Cavities, Polarization, Fresnel Relations, Thin Films, Fourier Optics, Acousto-Optic Diffraction, Laser Physics, Dispersion and Wave Propagation.

s359 Pages
Small Angle Scattering and Diffraction

Small Angle Scattering and Diffraction

This book shows how the existing technology of material characterization can contribute to science and applied technology. The authors who contributed with this book sought to show the importance of applying the existing techniques in the development of their works.

sNA Pages
Advances in Lasers and Electro Optics

Advances in Lasers and Electro Optics

This book is divided in four sections. The book presents several physical effects and properties of materials used in lasers and electro-optics in the first chapter and, in the three remaining chapters, applications of lasers and electro-optics in three different areas are presented.

sNA Pages
Optics Lecture Notes by M P Vaughan

Optics Lecture Notes by M P Vaughan

This book covers the following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle, Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.

sNA Pages
Optics Lecture notes

Optics Lecture notes

This note provides an introduction to optical science with elementary engineering applications. Topics covered in geometrical optics include: ray-tracing, aberrations, lens design, apertures and stops, radiometry and photometry. Topics covered in wave optics include: basic electrodynamics, polarization, interference, wave-guiding, Fresnel and Fraunhofer diffraction, image formation, resolution, space-bandwidth product.

sNA Pages
Engineering Optics

Engineering Optics

The main goal of this note is to introduce engineers to the characteristics of light that can be used to accomplish a variety of engineering tasks especially in mechanical analysis at macro and micro scales. Topics covered includes: Geometric Optics and Electromagnetic wave Theory Introduction to Light sources and photodetectors Geometric Moire: In-plane displacement measurement and out of plane displacement measurement, Geometric Moire, Moire Interferometry: Interference and Diffraction, Grating fabrication, Moire Interferometry: Holographic and Laser Speckle, Interferometry, Photoelasticity: theory, techniques and Multilayer structure: waveguide, filters, Introduction to fiber optic and waveguide delivery and detection, Periodic structure sensors.

sNA Pages
Adaptive Optics Progress

Adaptive Optics Progress

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Physics of Light and Optics

Physics of Light and Optics

This curriculum was originally developed for a senior-level optics course in the Department of Physics and Astronomy at Brigham Young University. Topics are addressed froma physics perspective and include the propagation of light in matter, reflection and transmission at boundaries, polarization effects, dispersion, coherence, ray optics and imaging, diffraction, and the quantumnature of light. Students using this book should be familiar with differentiation, integration, and standard trigonometric and algebraic manipulation.

s345 Pages

Advertisement