This lecture note covers the following topics: emission and absorption of
light, spectral lines, Atomic orders of magnitude, Basic structure of atoms, The
Central Field Approximation, Many-electron atoms, Energy levels, Corrections to
the Central Field, Spin-Orbit interaction, The Vector Model, Two-electron atoms,
Symmetry and indistinguishability, Nuclear effects on energy levels, Isotope
effects, Atoms in magnetic fields.
This book covers the following topics:
Quantum mechanics of the hydrogen atom , Radiative emission by atoms and
selection rules , Shell model and alkali spectra , Angular momentum coupling ,
Helium and the exchange energy , Spin-orbit coupling and spectral fine structure
, The Zeeman and Stark effects .
This note covers the
following topics: Planck's energy distribution law, Relation between Einstein
coe cients, Waves and particles, Schrodinger equation, Particle in a box, Ground
state of the hydrogen atom, Harmonic oscillator 1-D, Hydrogen atom and central
forces, Interaction of atoms with electromagnetic radiation, Spin of the
electron.
This note covers the
following topics: Hydrogen Atom, Hydrogen Atom Fine Structure, Helium Atom,
Multielectron atoms, Hartree-Fock theory, Interaction with Radiation, Lineshapes,
Photoelectric Effect, Introduction to Lasers, Diatomic Molecules and
Scattering.
This lecture note is an introduction to atomic
and molecular physics with non-relativistic quantum mechanics and elementary
mathematical physics as prerequisites. Topics covered includes: History of
Atomic and Molecular Physics and basic backgrounds, Atomic Physics and Atomic
Structure, Molecular Physics and Molecular Structure.