The main goal of this note is to introduce engineers to the characteristics
of light that can be used to accomplish a variety of engineering tasks
especially in mechanical analysis at macro and micro scales. Topics covered
includes: Geometric Optics and Electromagnetic wave Theory Introduction to Light
sources and photodetectors Geometric Moire: In-plane displacement measurement
and out of plane displacement measurement, Geometric Moire, Moire Interferometry:
Interference and Diffraction, Grating fabrication, Moire Interferometry:
Holographic and Laser Speckle, Interferometry, Photoelasticity: theory,
techniques and Multilayer structure: waveguide, filters, Introduction to fiber
optic and waveguide delivery and detection, Periodic structure sensors.
This book shows how the existing technology of material
characterization can contribute to science and applied technology. The
authors who contributed with this book sought to show the importance of
applying the existing techniques in the development of their works.
This lecture note explains following topics: Basics of optics, Laws
of Reflection and Refraction, Reflection from spherical mirrors, Velocity of
image, Refraction at Plane Surfaces, Prism Theory, Defects of images, Refraction
from curved surfaces.
This lecture note is intended to provide theoretical background to
understand and predict a host of optical phenomena that become possible when
nonlinearity in the optical response of a material is included in the
description. It includes a detailed description of several of these phenomena,
their experimental observation and photonic devices based on them.
This book covers the
following topics: Waves and Photons, The Physics of Waves,The Huygens-Fresnel
Principle, Diffraction, Maxwell's Equations, Polarisation, Fermats Principle,
Spherical Lenses and Mirrors, Crystal Symmetry and Optical Instruments.