Physics BooksMathematical Physics Books

Mathematical Method of Physics by Njah

Mathematical Method of Physics by Njah

Mathematical Method of Physics by Njah

The PDF covers the following topics related to Mathematical Physics : Linear Algebra, Vector Space or Linear Space, Matrix Theory, Complex Matrices, Matrix Algebra, Consistency of Equations, Solution of Sets of Equations, Eigenvalues and Eigenvectors of a Matrix, Transformation, Bases and Dimension, Functional Analysis, Normed Spaces, Special Functions, the Gamma and Beta Functions, Bessel’s Functions, Legendre’s Polynomials, Hermite Polynomials, Laguerre Polynomials, Integral Transform and Fourier Series, Laplace Transform, the Dirac Delta Function &

Author(s):

s57 Pages
Similar Books
Lecture Notes on Mathematical Statistical Physics

Lecture Notes on Mathematical Statistical Physics

This note explains the following topics: classical statistical mechanics, Review of classical mechanics, Review of probability and measure, The Maxwellian distribution Probability spaces in classical mechanics, Review of thermodynamics Macro states, Macro variables, Thermal equilibrium and entropy, The Boltzmann equation, The thermodynamic arrow of time, Quantum statistical mechanics and thermodynamic ensembles.

s173 Pages
Mathematical Physics by Indu Satija

Mathematical Physics by Indu Satija

This note covers Laws of nature and mathematical beauty, Gaussian Integrals and related functions, Basic gaussian integrals, Stirling formula error functions, Real numbers, Complex numbers, Scalars, Vectors, Tensors and spinor, Fourier transformation, Curvilinear coordinates, Partial differential equations, Solving partial differential equation by separation of variables, Solving laplace equation in spherical polar coordinates, Spherical harmonics and legendre functions, Bessel function, Spherical bessel function and matrices.

s120 Pages
Mathematical Method of Physics by Njah

Mathematical Method of Physics by Njah

The PDF covers the following topics related to Mathematical Physics : Linear Algebra, Vector Space or Linear Space, Matrix Theory, Complex Matrices, Matrix Algebra, Consistency of Equations, Solution of Sets of Equations, Eigenvalues and Eigenvectors of a Matrix, Transformation, Bases and Dimension, Functional Analysis, Normed Spaces, Special Functions, the Gamma and Beta Functions, Bessel’s Functions, Legendre’s Polynomials, Hermite Polynomials, Laguerre Polynomials, Integral Transform and Fourier Series, Laplace Transform, the Dirac Delta Function &

s57 Pages
An Introduction to Mathematical Physics Via Oscillation

An Introduction to Mathematical Physics Via Oscillation

The intent of this note is to introduce students to many of the mathematical techniques useful in their undergraduate physics education long before they are exposed to more focused topics in physics. Topics covered includes: ODEs and SHM, Linear Algebra, Harmonics - Fourier Series, Function Spaces, Complex Representations, Transform Techniques, Vector Analysis and EM Waves, Oscillations in Higher Dimensions.

sNA Pages
Lecture Notes for Mathematical Methods of Physics

Lecture Notes for Mathematical Methods of Physics

This note covers the following topics: Series of Functions, Binomial Theorem, Series Expansion of Functions, Vectors, Complex Functions, Derivatives, Intergrals, and the Delta Function, Determinants, Matrices, Vector Analysis, Vector Differentiation and Integration, Integral Theorems and Potential Theory, Curvilinear Coordinates, Tensor Analysis, Jacobians and Differential Forms, Vectors in Function Spaces, Gram-Schmidt Orthogonalization and Operators, Transformations, Invariants, and Matrix Eignevalue Problems, Hermitian and Normal Matrix Eigenvalue Paroblems, Ordinary Differential Equations, Second-Order Linear ODEs, Green's Functions.

sNA Pages
Mathematical Physics by Bergfinnur Durhuus and Jan Philip Solovej

Mathematical Physics by Bergfinnur Durhuus and Jan Philip Solovej

The main focus of this note is on theoretical developments rather than elaborating on concrete physical systems, which the students are supposed to encounter in regular physics courses. Topics covered includes: Newtonian Mechanics, Lagrangian Mechanics, Hamiltonian Mechanics, Hilbert Spaces, Operators on Hilbert spaces and Quantum mechanics.

s177 Pages