This note introduces Quantum Mechanics at an advanced level
addressing students of Physics, Mathematics, Chemistry and Electrical
Engineering. It covers the following topics: Lagrangian Mechanics, Quantum
Mechanical Path Integral, The Schr¨odinger Equation, Linear Harmonic
Oscillator, Theory of Angular Momentum and Spin, Quantum Mechanical Addition
of Angular Momenta and Spin, Motion in Spherically Symmetric Potentials,
Interaction of Charged Particles with Electromagnetic Radiation,
Many–Particle Systems, Relativistic Quantum Mechanics, Spinor Formulation of
Relativistic Quantum Mechanics and Symmetries in Physics.
This is an introductory
note on quantum mechanics. Topics covered includes: A Quantum Particle in One
Dimension, The Formalism of Quantum Mechanics, A Quantum Particle in Three
Dimensions.
This
lecture note explains the following topics: Classical Mechanics, Abstract vector
spaces, Functions as vectors, Postulates of Quantum Mechanics, The Wavefunction,
The Uncertainty Principle, Scattering Theory, Stationary States, Angular
Momentum, The Hydrogen Atom, Spin.
This
lecture note explains the following topics: Schrodinger’s Equation, Piecewise
Potentials, Linear Algebra and Function Space, Angular Momentum and Spin,
Multiple Particles, Perturbation Theory – Fine Structure, Time Dependent
Perturbation Theory, Relativistic Quantum Mechanics: The Dirac Equation.