This
note covers the following topics: Nuclear
sizes and isotope shifts, The Semi Empirical Mass Formula, Coulomb term, Volume
and Surface term, Asymmetry term, Pairing term, alpha decay, beta decay, Valley of
stability, Fermi theory of beta decay, Selection Rules in beta decay, Electron
capture, Inverse beta decay, gama decay, Mossbauer effect, Bethe-Bloch formula,
Cherenkov radiation, Bremsstrahlung, Synchrotron radiation, Photons in matter,
Photomultiplier, Avalanche Photo Diode, Scintillators, Gas-filled counters,
Experimental set-ups, Response of a Ge-Li detector and Radiation units.

This note will
focus on understanding the complete nuclear reactor system including the balance
of plant, support systems and resulting interdependencies affecting the overall
safety of the plant and regulatory oversight. Topics covered includes: Reactor
kinetics and control, Fuel depletion and related effects, Reactor energy
removal, Design issues, Power cycles for nuclear plants, Boiling water reactors,
Safety culture, Current regulatory safety issues.

This note will cover a range
of topics pertinent to nuclear engineering, including particle physics, neutron
theory, nuclear reactor design, medical applications, societal impacts of
nuclear power. Major topics covered includes: Special Relativity,
Schroedinger's Wave Equation, Nuclear Models, Nuclear Decay Kinetics, Binary
Nuclear Reactions, Fission and Fusion, Radiation, Nuclear Reactor Theory: Six
Factor Formula, Reactor Design, Reactor Kinetics, Neutron Transport, Light Water
Reactors, The Nuclear Fuel Cycle, Radiation Detection and Measurement, Nuclear
Materials, Radiation Doses, Nuclear Reactor Safety and Nuclear Accidents.

This book presents
a comprehensive review of studies in nuclear reactors technology from authors
across the globe. Topics discussed in this compilation include: thermal
hydraulic investigation of TRIGA type research reactor, materials testing
reactor and high temperature gas-cooled reactor, decay heat in reactors and
spent-fuel pools, present status of two-phase flow studies in reactor
components, two-phase flow coolant behavior in boiling water reactors under
earthquake condition, simulation of nuclear reactors core, fuel life control in
light-water reactors, methods for monitoring and controlling power in nuclear
reactors, structural materials modeling for the next generation of nuclear
reactors, application of the results of finite group theory in reactor physics,
and the usability of vermiculite as a shield for nuclear reactor.

This book covers
the following topics: Nuclear masses, Rms charge radii, Charge densities and
form factors, Overview of nuclear decays, The Fermi gas model, Overview of the
nuclear shell model, The one body potential, Woods-Saxon potential, Many Body
Wavefunctions, Two-Body Hamiltonian, Configuration mixing, One body transition
operators and the OBTD, Electromagnetic transitions and allowed beta decay.

This
book gives an elementary but coherent account of that branch of physics involved
in the study and design of nuclear reactors at a standard presentation judged to
be suitable for advanced undergraduate students.

This
note covers the following topics: Nuclear
sizes and isotope shifts, The Semi Empirical Mass Formula, Coulomb term, Volume
and Surface term, Asymmetry term, Pairing term, alpha decay, beta decay, Valley of
stability, Fermi theory of beta decay, Selection Rules in beta decay, Electron
capture, Inverse beta decay, gama decay, Mossbauer effect, Bethe-Bloch formula,
Cherenkov radiation, Bremsstrahlung, Synchrotron radiation, Photons in matter,
Photomultiplier, Avalanche Photo Diode, Scintillators, Gas-filled counters,
Experimental set-ups, Response of a Ge-Li detector and Radiation units.

This note covers the
following topics: strong force, electromagnetic force, weak force, gravitational
force, elementary particle, antiparticle and Conservation Laws.

Author(s): The
University of Tennessee, Department of Physics and Astronomy