This note covers
the following topics:The Mathematical Formalism of Quantum Mechanics,
Postulates of Quantum Mechanics, Density Operator, Spatial Degrees of Freedom,
Time Evolution in Quantum Mechanics, The WKB Method, Harmonic Oscillators and
Coherent States, The Propagator and the Path Integral, Charged Particles in
Magnetic Fields, Rotations in Ordinary Space, Rotations in Quantum Mechanics,
and Rotations of Spin / Systems, Representations of the Angular Momentum
Operators and Rotations, Spins in Magnetic Fields, Orbital Angular Momentum and
Spherical Harmonics, Central Force Motion, Hydrogen, Coupling of Angular Momenta,
Irreducible Tensor Operators and the Wigner-Eckart Theorem, Bound-State
Perturbation Theory, The Stark Effect in Hydrogen and Alkali Atoms, The
Photoelectric Effect.
This is an introductory
note on quantum mechanics. Topics covered includes: A Quantum Particle in One
Dimension, The Formalism of Quantum Mechanics, A Quantum Particle in Three
Dimensions.
This note
covers the following topics: The History of Quantum Mechanics and Motivation,
Radially Symmetric Problems, Principles of Quantum Mechanics, Spins,
Time-independent Perturbation Theory, Time-dependent Perturbation Theory.
This note explains the following topics:
The Classical State, Historical Origins of Quantum Mechanics, The Wave-like
Behaviour of Electrons, Energy and Uncertainty, Quantum State, Operators and
Observations, Rectangular Potentials, The Harmonic Oscillator, Spectrum of
Angular Momentum, Aspects of Spin, Electron Spin, Approximation Methods, Quantum
Mechanics as Linear Algebra, Feynman Path-Integral Quantization.
This note covers
the following topics:The Mathematical Formalism of Quantum Mechanics,
Postulates of Quantum Mechanics, Density Operator, Spatial Degrees of Freedom,
Time Evolution in Quantum Mechanics, The WKB Method, Harmonic Oscillators and
Coherent States, The Propagator and the Path Integral, Charged Particles in
Magnetic Fields, Rotations in Ordinary Space, Rotations in Quantum Mechanics,
and Rotations of Spin / Systems, Representations of the Angular Momentum
Operators and Rotations, Spins in Magnetic Fields, Orbital Angular Momentum and
Spherical Harmonics, Central Force Motion, Hydrogen, Coupling of Angular Momenta,
Irreducible Tensor Operators and the Wigner-Eckart Theorem, Bound-State
Perturbation Theory, The Stark Effect in Hydrogen and Alkali Atoms, The
Photoelectric Effect.
This lecture note
explains the following topics: Hamilton’s Formalism of Classical Physics, State
Vectors and Operators, The Position and Momentum Observables, Quantum Dynamics,
The Harmonic Oscillator, Angular Momentum, Central Potential, Density Operator,
Time Independent Perturbation Theory, Time-Dependent Perturbation Theory, Path
Integration, Adiabatic Approximation, Light Matter Interaction, Open Quantum
Systems.
This book covers the following topics: Maxwell’s Equations, Electrostatic Fields, Potential Theory, Magnetostatic
Fields, Magnetostatics in Magnetic Media, Wave Propagation in Uniform
Dielectric Media, Wave Propagation in Inhomogeneous Dielectric Media,
Radiation and Scattering, Resonant Cavities and Waveguides, Multipole
Expansion, Relativity and Electromagnetism.
This note introduces Quantum Mechanics at an advanced level
addressing students of Physics, Mathematics, Chemistry and Electrical
Engineering. It covers the following topics: Lagrangian Mechanics, Quantum
Mechanical Path Integral, The Schr¨odinger Equation, Linear Harmonic
Oscillator, Theory of Angular Momentum and Spin, Quantum Mechanical Addition
of Angular Momenta and Spin, Motion in Spherically Symmetric Potentials,
Interaction of Charged Particles with Electromagnetic Radiation,
Many–Particle Systems, Relativistic Quantum Mechanics, Spinor Formulation of
Relativistic Quantum Mechanics and Symmetries in Physics.
This
book explains the following topics related to Quantum Mechanics:
Principles of Classical Mechanics, Failure of Classical Mechanics,
Principles of Quantum Mechanics, Applications of Quantum Mechanics, The
Rotating Planar Oscillator, Dirac Formulation.