An important aspect of
the design of this note is to maintain a concise basic treatment of the physics,
with derivations and examples available behind hyperlinks. Topics covered
includes: The Problems with Classical Physics, Diffraction, Wave Packet,
Operators, The Schrodinger Equation, Eigenfunctions, Eigenvalues and Vector
Spaces, 3D Problems Separable in Cartesian Coordinates, Hydrogen, 3D Symmetric
HO in Spherical Coordinates, Electrons in an Electromagnetic Field, Time
Independent Perturbation Theory, Fine Structure in Hydrogen, Atomic Physics,
Scattering, Classical Scalar Fields, Quantum Theory of Radiation, Dirac
Equation.
This note covers the
following topics: Classical Physics, Waves, Probability Density, The Ultraviolet
Catastrophe, Bragg X-ray Diffraction, Wave-Particle Duality, Particles and
Fields, Heisenberg’s Uncertainty Principle, Wavefunctions - Schrodinger’s
Equation, Quantum Tunnelling, Quantum States and Superposition, Two State
Systems, Wavefunction Collapse, Interpretations of Quantum Physics,
Probabilistic Determinism.
Quantum physics is a
catch-all term for the ideas, devices and technologies made possible by the
development of quantum mechanics in the early part of the 20th century. This
note concentrates on the ideas behind quantum mechanics itself, but the broader
field of quantum physics encompasses everything from the science of electronic
devices and lasers to the philosophical mysteries of quantum measurement
theory.
This note covers the following
topics: Time-Independent Non-degenerate Perturbation Theory, Dealing with Degeneracy, Degeneracy, Symmetry and
Conservation Laws, Time--dependence, Two state systems, Hydrogen ion and
Covalent Bonding, The Variational Principle, Indistinguishable Particles and
Exchange, Self-consistent field theory, Fundamentals of Quantum Scattering
Theory, Scattering in three dimensions, Quantum Scattering Theory, Partial
Waves.
This book is written for anybody who is curious about nature and
motion. It covers the following topics: Minimum action: quantum theory for
poets, Light: the strange consequences of the quantum of action, Motion of
matter: beyond classical physics, The quantum description of matter and its
motion, Permutation of particles, Rotations and statistics: visualising spin,
Superpositions and probabilities, quantum theory without ideology, Colours and
other interactions between light and matter and Quantum physics in a
nutshell.