Physics BooksClassical Mechanics Books

Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics

Advertisement

Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics

Lecture notes on Classical Mechanics and Electromagnetism in Accelerator Physics

The topics in this lecture notes are : Linear and Nonlinear Oscillators, Lagrangian and Hamiltonian equations of motion, Canonical transformations, Liouville’s theorem, Action-angle variables, Coordinate system and Hamiltonian in an accelerator, Equations of motion in accelerator, Action-angle variables for circular machines, Field errors and nonlinear resonances, Resonance overlapping and dynamic aperture, The kinetic equation, Radiation damping effects, Primer in Special Relativity, Selected electrostatic and magnetostatic problems, Self field of a relativistic beam, Effect of environment on electromagnetic field of a beam, Plane electromagnetic waves and Gaussian beams, Radiation and retarded potentials, Scattering of electromagnetic waves, Synchrotron radiation, Undulator radiation, Transition and diffraction radiation, Formation length of radiation and coherent effects, Synchrotron radiation reaction force, Waveguides and RF cavities, Laser acceleration in vacuum. Inverse FEL acceleration.

Author(s):

s214 Pages
Similar Books
Introduction to Classical Mechanics by Salah Nasri

Introduction to Classical Mechanics by Salah Nasri

This note exlains the following topics: newtonian mechanics of point like objects, Gravitating bodies, D Alembert principle and euler lagrange equations, Hamiltons principle, Rotating frames, Rotating frames and rigid body, Small oscillations, The hamiltonian formalism, Nonlinear dynamics and chaos.

s185 Pages
Classical Mechanics by Julio Gea Banacloche

Classical Mechanics by Julio Gea Banacloche

This is a “minimalist” textbook for a first semester of university, calculus-based physics, covering classical mechanics, plus a brief introduction to thermodynamics. Topics covered includes: Acceleration, Momentum and Inertia, Kinetic Energy, Interactions and energy, Interactions, Forces, Impulse, Work and Power, Motion in two dimensions, Rotational dynamics, Gravity, Simple harmonic motion, Waves in one dimension, Thermodynamics.

sNA Pages
Graduate     Classical Mechanics

Graduate Classical Mechanics

This note describes the following topics: The Calculus of Variations, Fermat's Principle of Least Time, Hamilton's Principle and Noether's Theorem, Mechanical Similarity, Hamilton's Equations, Poisson Brackets, A New Expression for the Action, Maupertuis' Principle, Canonical Transformations, Liouville's Theorem, The Hamilton-Jacobi Equation, Adiabatic Invariants and Action-Angle Variables, Mathematics for Orbits, Keplerian Orbits, Elastic Scattering, Small Oscillations, Driven Oscillator, One-Dimensional Crystal Dynamics, Parametric Resonance, The Ponderomotive Force, Resonant Nonlinear Oscillations, Rigid Body Motion, Moments of Inertia, Rigid Body Moving Freely, Euler Angles, Eulers Equations, Non Inertial Frame, Coriolis effect, A Rolling Sphere on a Rotating Plane.

sNA Pages
Notes     for Classical Mechanics, Govind S. Krishnaswami

Notes for Classical Mechanics, Govind S. Krishnaswami

This note explains the following topics: Newtonian and Lagrangian mechanics of point particles, Hamiltonian formalism of mechanics, Canonical transformations, Rigid body mechanics, Dynamics of continuous media/deformable bodies: Lagrangian and Eulerian descriptions, Vibrations of a stretched string.

s64 Pages
Classical     Mechanics MIT Course Notes

Classical Mechanics MIT Course Notes

This lecture note explains the following topics: History and Limitations of Classical Mechanics, Units, Dimensional Analysis, Problem Solving, and Estimation, Vectors, Dimensional Kinematics, Newton’s Laws of Motion, Circular Motion, Momentum, System of Particles, and Conservation of Momentum, Potential Energy and Conservation of Energy, Angular Momentum, Simple Harmonic Motion, Celestial Mechanics, Kinetic Theory.

sNA Pages
Classical     Mechanics by Charles B. Thorn

Classical Mechanics by Charles B. Thorn

This book explains the following topics: Hamilton’s Principle of Least Action, Conservation Laws and Symmetries of the Lagrangian, Solving the Equations of Motion, Scattering Processes, Small Oscillations, Rigid body motion and Hamiltonian Formulation of Mechanics.

s76 Pages
Physics I Classical Mechanics III

Physics I Classical Mechanics III

This note covers the following topics: introduction , force as a vector, static equilibrium, addition and subtraction of vectors ,kinematics: describing 1D motion and  relative velocity ,  kinematics and velocity , kinematics: 2D motion and circular motion , Newton's three laws ,  friction , springs , circular motion with gravity ,  potential energy diagrams,  potential energy of springs , conservation of momentum , momentum, combining momentum and energy , 2D collisions , power, impulse, center of mass , simple harmonic motion , gravity, properties of fluids , introduction to angular motion , statics and dynamics of angular motion , pendulums and kinetic energy of rotation , energy and momentum of rotation.

sNA Pages
Classical Mechanics An introductory course

Classical Mechanics An introductory course

This note covers the following topics: Motion in 1 dimension, Motion in 3 dimension, Newton's laws of motion, Conservation of energy, Circular motion, Rotational motion, Angular momentum, Statics, Oscillatory motion and Orbital motion.

sNA Pages
Classical Mechanics An introductory course (PDF 297p)

Classical Mechanics An introductory course (PDF 297p)

This note covers the following topics: Motion in 1 dimension, Motion in 3 dimension, Conservation of energy, Newton's laws of motion, Conservation of momentum, Circular motion, Rotational motion, Angular momentum, Statics, Oscillatory motion, Orbital motion and Wave motion.

s297 Pages
Classical Mechanics (Joel A. Shapiro PDF 252p)

Classical Mechanics (Joel A. Shapiro PDF 252p)

This note covers the following topics: Particle Kinematics, Lagrange’s and Hamilton’s Equations, Two Body Central Forces, Rigid Body Motion, Small Oscillations, Hamilton’s Equations, Perturbation Theory and Field Theory.

s252 Pages
Classical Mechanics

Classical Mechanics

This note covers the following topics: Centres of Mass, Moment of Inertia, Systems of Particles, Rigid Body Rotation, Collisions, Motion in a Resisting Medium, Projectiles, Conservative Forces, Rocket Motion, Simple and Damped Oscillatory Motion, Forced Oscillations, Lagrangian Mechanics, Hydrostatics, The Cycloid, Central Forces and Equivalent Potential, Vibrating Systems and Dimensions.

sNA Pages
Lectures on Classical Mechanics [PDF 76p]

Lectures on Classical Mechanics [PDF 76p]

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Classical Mechanics Notes

Classical Mechanics Notes

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Lecture Notes on Classical Mechanics for Physics [Sunil Golwala PDF 396p]

Lecture Notes on Classical Mechanics for Physics [Sunil Golwala PDF 396p]

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Classical Mechanics Lecture Notes [PDF 8p]

Classical Mechanics Lecture Notes [PDF 8p]

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages
Classical   Mechanics Class Notes

Classical Mechanics Class Notes

Currently this section contains no detailed description for the page, will update this page soon.

sNA Pages

Advertisement