This note covers
the following topics: introduction , force as a vector, static equilibrium,
addition and subtraction of vectors ,kinematics: describing 1D motion and
relative velocity , kinematics and velocity , kinematics: 2D motion and
circular motion , Newton's three laws , friction , springs , circular
motion with gravity , potential energy diagrams, potential energy of
springs , conservation of momentum , momentum, combining momentum and energy ,
2D collisions , power, impulse, center of mass , simple harmonic motion ,
gravity, properties of fluids , introduction to angular motion , statics and
dynamics of angular motion , pendulums and kinetic energy of rotation , energy
and momentum of rotation.
This note exlains the following topics: newtonian mechanics of point like objects,
Gravitating bodies, D Alembert principle and euler lagrange equations,
Hamiltons principle, Rotating frames, Rotating frames and rigid body, Small
oscillations, The hamiltonian formalism, Nonlinear dynamics and chaos.
This note
exlains Newtonian remarks, Oscillations, Gravitation, Variational calculus, Lagrangian and hamiltonian mechanics, Central force
motion, Systems of particles, Motion in a noninertial reference frame,
Dynamics of rigid bodies and small oscillations.
The contents include: Newton’s Laws of Motion, The Lagrangian
Formalism, The Motion of Rigid Bodies , The Hamiltonian Formalism,
Introduction to Dynamics, Systems of Particles, Linear Oscillations,
Calculus of Variations, Lagrangian Mechanics, Constraints, Central Forces
and Orbital Mechanics, Small Oscillations, Elastic Collisions, Noninertial
Reference Frames, Rigid Body Motion and Rotational Dynamics, Continuum
Mechanics, Special Relativity, Hamiltonian Mechanics.
This is a “minimalist” textbook for a first semester of
university, calculus-based physics, covering classical mechanics, plus a
brief introduction to thermodynamics. Topics covered includes: Acceleration,
Momentum and Inertia, Kinetic Energy, Interactions and energy, Interactions,
Forces, Impulse, Work and Power, Motion in two dimensions, Rotational
dynamics, Gravity, Simple harmonic motion, Waves in one dimension,
Thermodynamics.
This lecture note explains the following topics:
Newtons laws of motion, Scalars and Vector, Units and Dimensions, Time rate
of change of vectors, Motion in one dimension, Motion under a constant
force, Force of friction, Kinematical relations, Simple Harmonic motion,
Motion in a plane, Central force, Rotating frame of reference.
This note explains the following topics: Newtonian and
Lagrangian mechanics of point particles, Hamiltonian formalism of mechanics,
Canonical transformations, Rigid body mechanics, Dynamics of continuous
media/deformable bodies: Lagrangian and Eulerian descriptions, Vibrations of
a stretched string.