Advanced text on Jack Simons' book deals with the concepts and applications
of theoretical chemistry. It deals with foundational quantum mechanics, model
problems, and characterization of energy surfaces. The book also discusses the
practical tools and methods used in theoretical chemistry, like quantum
dynamics, statistical mechanics, and chemical dynamics. It primarily focuses on
the computational techniques that support both theoretical research in chemistry
and discuss topics such as electronic structure, chemical kinetics, relationship
between the theory and experimental data.
This
lecture note explains fundamental concepts in quantum mechanics and
theoretical chemistry, particularly focusing on the electronic structure of
atoms and molecules. The document explores main topics such as many-electron
systems, quantum mechanical models, and their implications in understanding
molecular behavior. It provides a theoretical framework essential for
computational chemistry, aiming to bridge the gap between theoretical and
experimental chemistry. Topics discussed include the nature of electronic
structure, atomic and molecular orbitals, and quantum mechanics' role in
chemical reactions, forming the foundation of computational chemistry
approaches.
Author(s): Peter G.Szalay, Eotvos Lorand University
This guide is meant to
provide easy access for chemistry students to develop necessary mathematical
skills in a concise, at-hand fashion. It relates key mathematical concepts that
commonly are applied in chemistry, in algebra, calculus, and statistical
methods. The book presents mathematics as fundamental to solving problems in
chemistry and for grasping more sophisticated ideas in physical chemistry,
quantum mechanics, and molecular simulations. It is focused on enhancing the
student's ability to apply mathematical tools in both theoretical and
experimental contexts in chemistry.