Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
Fundamentals and Applications of Laser Induced Breakdown Spectroscopy
This note provides an overview of the principles and applications
of Laser-Induced Breakdown Spectroscopy, a powerful technique for elemental
analysis. Prof. Yalc discusses the physics that underlies LIBS, including the
formation and evolution of laser plasmas, and shows the components of a LIBS
system, including lasers, optics, and detection systems. The note explores
further the use of laser plasma excitation for spectrochemical analysis, which
is applicable to gases, liquids, solids, and particles. A special issue like
double pulse LIBS, resonance-enhanced LIBS, and laser-induced fluorescence (LIF-LIBS)
are also covered. The importance of this note lies in the recent advances and
applications in the areas of materials science as well as environmental
analysis.
It is an
introductory note focused on key concepts in atomic and molecular spectroscopy,
which serves as a foundational understanding of several types of spectroscopic
techniques, which include atomic spectroscopy, molecular spectroscopy, and then
more specialized techniques such as rotational, vibrational, Raman, and
electronic spectroscopies. The note goes into principles and applications to how
they are used in studying the structure and behavior of molecules and atoms.
This help resource will be valuable to students and beginners interested in
understanding the theory behind spectroscopic techniques as applied in chemical
analysis, materials science, and molecular studies.
James Keeler's note on NMR spectroscopy is rather solid in presenting
principles of NMR along with its application to chemical structure analysis. It
covers key topics like energy levels involved in NMR, the vector model, Fourier
transformation, and data processing. The note explains how NMR spectrometers
work and introduces more advanced techniques like two-dimensional NMR, which
permits the analysis of far more detailed complex molecular structures.
Additional topics covered include relaxation processes, phase cycling, and
gradient pulses to give a full understanding of NMR spectroscopy to students and
researchers looking to master this powerful analytical tool.