High Performance Polymers Polyimides Based From Chemistry to Applications
High Performance Polymers Polyimides Based From Chemistry to Applications
High Performance Polymers Polyimides Based From Chemistry to Applications
This book will review synthesis, mechanisms, ultimate properties,
physico-chemical properties, processing and applications of such high
performance materials needed in advanced technologies. Topics covered includes:
Polyimides Based on 4-4-Diaminotriphenylmethane, BPDA-PDA Polyimide, Chemical
and Physical Properties of Polyimides, Controlling the Alignment of Polyimide
for Liquid Crystal Devices, Fabrication of Polyimide Porous Nanostructures for
Low-k Materials, Novel Polyimide Materials Produced by Electrospinning,
Polyimide-Coated Fiber Bragg Grating Sensors for Humidity Measurements, Semi-Alicyclic
Polyimides, Sensor Applications of Polyimides, Auto-Reparation of Polyimide Film
Coatings for Aerospace Applications Challenges and Perspectives.
This note covers the entire syllabi of Veer Surendra Sai University
of Technology (VSSUT) various basic as well as advanced topics of polymer
chemistry. It introduces classes of polymers, which discuss the differences
between thermoplastics and thermosetting polymers, and discusses natural versus
synthetic polymers. This note will be covering organic and inorganic polymers
with special emphasis on cis-trans isomerism and the glass transition
temperature. The notes also elaborate on significant features such as
crystallinity in polymers, step polymerization or polycondensation and kinetics
of polymerization without strong catalysts. Molecular weight control of linear
polymerization receives major emphasis and is thus a useful reference for
students and for professionals who need to study synthesis structure, and
properties of polymers, in detail.
Author(s): Veer Surendra Sai University of
Technology
This Wikipedia
resource provides an overview of the most common synthetic polymers; namely,
low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene
(PP), polyvinyl chloride (PVC), polystyrene (PS), nylon, and others. The
resource outlines the general properties of these polymers, its uses, and
production methods with more attention on their wide applications in daily life.
This guide would serve as an excellent resource to the understanding of the
synthetic polymer industry and the key materials that are integral to modern
manufacturing, packaging, and electronics. It is a quick one-stop reference that
scholars can use.
Another source from Seoul National University, this book
discusses mechanical and physical properties of polymers, a focus being on how
molecular structure affects performance. Included topics are small vs. large
molecules, shapes of molecules, and the study of polymer morphology. This
resource also covers polymer blends and copolymers on how structure and
composition may change the overall properties of materials. I find this resource
informative about techniques used in testing polymers, such as physical testing
methods, and really is a great guide for whosoever might want to understand the
material science behind polymer engineering, blends, and their mechanical
properties.
This set of notes by Prof. Lee summarizes the two major
polymerization methodologies: step polymerization and chain polymerization. The
purpose it serves in giving an overview of how the former processes work and why
they are important in polymer synthesis makes the insight that much invaluable.
Step polymerization is the process by which monomers are brought together to
form polymers through condensation or elimination reactions, and the primary
focus of chain polymerization is based upon polymer growth through repeating
cycles of monomer addition. The notes provide a compact source of information on
polymerization techniques. It is, therefore, highly necessary to students as an
introductory material in polymer chemistry, a fundamental method of polymer
science.