Polyester Production, Characterization and Innovative Applications
Polyester Production, Characterization and Innovative Applications
Polyester Production, Characterization and Innovative Applications
The work cuts across advanced research on polyester production
methods, characterization techniques, and new applications. It explores the
functional properties of polyester, including modification applied to enhance
the performance of polyester, among them being unsaturated polyester resins. The
book also addresses polyester in construction and automobile industries, its
function in several forms such as fiber, resin, and composite. The book contains
elaborate analysis of the polyester mechanical, chemical, physical, and thermal
properties and can be used as an aid for understanding the versatility and
future of such an important polymer.
This note covers the entire syllabi of Veer Surendra Sai University
of Technology (VSSUT) various basic as well as advanced topics of polymer
chemistry. It introduces classes of polymers, which discuss the differences
between thermoplastics and thermosetting polymers, and discusses natural versus
synthetic polymers. This note will be covering organic and inorganic polymers
with special emphasis on cis-trans isomerism and the glass transition
temperature. The notes also elaborate on significant features such as
crystallinity in polymers, step polymerization or polycondensation and kinetics
of polymerization without strong catalysts. Molecular weight control of linear
polymerization receives major emphasis and is thus a useful reference for
students and for professionals who need to study synthesis structure, and
properties of polymers, in detail.
Author(s): Veer Surendra Sai University of
Technology
The main area that resource Telmo
Ojeda talks about involves ecological aspects of polymers focused on the waste
of polymers, degradation process, and biodegradable polymers. He expresses the
fate of polymeric material at disposal, elaborating on non-biodegradable and
biodegradable polymers primarily from renewable resources. This guide provides
valuable information to understand synthetic polymers' ecological implications
and future aspects with development aspects for environment-friendly polymers.
The note on emerging materials provides a brief overview of materials that have
been developed with environmental issues posed by plastic waste in their mind
and could be the route to sustainable polymer development.
The resource provided by Seoul National University has deep
insight into the physical and structural properties of polymers. Text here
covers different states through which polymers go: rubbery, molten, and
crystalline states, in addition to discussing crystallization processes and
polymer morphology. This resource covers the ways molecular structure affects
the material's physical properties and behavior. Topics include conformation,
real chain structures, and the glassy state with substantial detail in how
polymers operate under various conditions. This sourcebook is indispensible
reading for anyone investigating the structural-functional relation in advanced
polymer science.
Another source from Seoul National University, this book
discusses mechanical and physical properties of polymers, a focus being on how
molecular structure affects performance. Included topics are small vs. large
molecules, shapes of molecules, and the study of polymer morphology. This
resource also covers polymer blends and copolymers on how structure and
composition may change the overall properties of materials. I find this resource
informative about techniques used in testing polymers, such as physical testing
methods, and really is a great guide for whosoever might want to understand the
material science behind polymer engineering, blends, and their mechanical
properties.