This note covers the following topics: Applications of
Electrochemistry, Work from Chemical Reactions, Work from Redox Reactions ,
Electrochemical Cells, Atomic View of an Electrochemical Cell, Electrochemical
Cells, Cell Diagrams, Redox Reactions, Current and Charge, Electrical Work, Cell
Potential, Standard Cell Potential, Standard Electrode Potentials, Cell
Potential and Equilibrium Constant, Dissolving Metals with Acids and The Nernst
Equation.
This is a
comprehensive lecture note on the basics of electrochemistry, including the
principles and various applications of the subject. The topic discussed includes
electrochemical cells, corrosion, electrochemical processes, batteries, and fuel
cells. The question bank is also included as a practice document to help readers
with useful problem-solving exercises for the concepts. In addition, advanced
materials and nano materials are discussed to show the importance of modern
materials in electrochemical processes. The laboratory manual offers students
hands-on experience with real experiments on electrochemistry. The note is
priceless for both professionals and students who wish to hone their
understanding of electrochemical systems.
Author(s): Dr. Lorenz Gubler,
Electrochemistry Laboratory Paul Scherrer Institute Switzerland
This book
makes a deep dive into the physical principles underlying electrochemical
processes, mainly focusing on the electrical double layer (EDL), solute
transport, and electrokinetics. In this text, there is coverage of models that
describe the EDL, such as the Gouy-Chapman-Stern model, and extends into more
complex phenomena such as combined mass transport and chemical reactions,
reverse osmosis, and electrodialysis. It also goes into the physics of
electrochemical systems at the microscopic level, both non-Faradaic and Faradaic
processes. The book applies to fields like bioelectrochemistry and environmental
chemistry and even briefly discusses some experimental methods and numerical
modeling used in electrochemical research.
This thesis examines the electrochemistry of magnesiumion systems by
modifying the Lewis acidbase pair to improve the stability and performance of
magnesium electrolytes. It specifically focuses on two novel approaches aimed at
improving non-Grignard magnesium electrolytes oxidative stability and reducing
corrosion in stainless steel systems. The work discusses the surface
modification of carbon electrodes and the use of molybdenum-oxo complexes for
proton reduction. It concludes in discussions toward future prospects in
magnesium-ion electrochemistry, especially for high-performance energy storage
systems.
Author(s): Emily G. Nelson, University of
Michigan
The book undertakes a comprehensive review of electrochemical sensors with
applications in specific chemical and biosensing fields. It discusses all the
developments in electrochemical and electroanalytical methods and goes about
innovations and improvements in sensor design. In so doing, chapters by
international experts show the various sensor types used in environmental
monitoring, health-related applications, and industrial applications. In
general, this book is highly rich in theoretical principles and practical
applications, and thus makes it excellent reading for practitioners working in
the field of sensor technology and electrochemical analysis.
Author(s): Mohammed Muzibur Rahman and Abdullah Mohammed
Asiri