This lecture
note is designed to introduce the basics and applications of electrochemistry to
students in varied fields, including analytical, physical and materials
chemistry. Major topics covered includes: Electrode processes, Electron
transfer kinetics, Mass transfer: convection, migration and diffusion,
Double-layer structures and surface adsorption, Potential step techniques,
Potential sweep method, Hydrodynamic techniques and Impedance based techniques.
This lecture note provides an exposure into electrochemistry
with all its facets, ranging from the fundamentals like redox reactions and
Faraday's laws to advanced concepts in industrial electrochemistry. Topics range
from equilibrium electrochemistry to electrochemical cells, and from energy
conversion and storage systems like batteries and fuel cells, analytical methods
and sensors, to corrosion protection. The applications of electrochemistry are
also brought into display, be it in the fields of energy storage, corrosion
processes, or latest technologies. Anyone looking to learn about the
electrochemical basis of energy systems and environmental processes will find
this resource indispensable.
This is a
comprehensive lecture note on the basics of electrochemistry, including the
principles and various applications of the subject. The topic discussed includes
electrochemical cells, corrosion, electrochemical processes, batteries, and fuel
cells. The question bank is also included as a practice document to help readers
with useful problem-solving exercises for the concepts. In addition, advanced
materials and nano materials are discussed to show the importance of modern
materials in electrochemical processes. The laboratory manual offers students
hands-on experience with real experiments on electrochemistry. The note is
priceless for both professionals and students who wish to hone their
understanding of electrochemical systems.
Author(s): Dr. Lorenz Gubler,
Electrochemistry Laboratory Paul Scherrer Institute Switzerland
This is an online resource which explores basic electrochemical
concepts regarding energy engineering. The text spans from principles in
electric charge and potential to thermodynamics, as well as the role of
electrode reactions. It elaborates on the theory behind electroactive layers and
modified electrodes, alongside governing electrochemical response principles.
Scanning probe methods, photoelectrochemistry, and spectroelectrochemistry
techniques are covered. This note grounds the reader in electrochemical
principles with a focus on the application of these principles in energy
systems, making it very useful for students and engineers interested in
electrochemical energy conversion and storage technologies.
This book describes a description of electrophoresis-a method that
separates charged particles in a fluid influenced by an electric field. It
elaborates on the principles behind this method and various applications.
Innovations are also given an account to provide insight into how this method
can be used for practical applications such as the application of
electrophoresis in biochemistry, molecular biology, and analytical chemistry.
This book covers electrophoresis in different methods, such as classic and
modern types, from development to its future application. The reader of the book
can acquire practical information on electrophoresis, with more and more
application in scientific studies today.