Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
This note covers the following topics: Stretching Interactions,
The Force-Field, Stretch Energy, Bend Energy, Torsional Energy, van der Waals
Energy, Electrostatic Energy, Fitting Atomic Charges, The Fluctuating Charge
Model, Other Polarizable Models, Parameterizing the Force Fields and Heats of
Formation.
This guide is meant to
provide easy access for chemistry students to develop necessary mathematical
skills in a concise, at-hand fashion. It relates key mathematical concepts that
commonly are applied in chemistry, in algebra, calculus, and statistical
methods. The book presents mathematics as fundamental to solving problems in
chemistry and for grasping more sophisticated ideas in physical chemistry,
quantum mechanics, and molecular simulations. It is focused on enhancing the
student's ability to apply mathematical tools in both theoretical and
experimental contexts in chemistry.
This is an all-inclusive PDF note on an introduction to quantum mechanics
in theoretical chemistry. Major concepts introduced are wave mechanics, quantum
dynamics, and angular momentum. The material under study includes approximation
methods and symmetry in quantum mechanics, which forms the key for molecular
behavior. The theory of chemical bonding, scattering theory, and relativistic
quantum mechanics were also considered. This note provides students with a
comprehensive exposure to the role that quantum mechanics plays in the
explanation of chemical phenomena and provides a foundation for more
sophisticated theoretical studies in chemistry.