Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
Introduction to Molecular Mechanics by C. David Sherrill(PDF 43p)
This note covers the following topics: Stretching Interactions,
The Force-Field, Stretch Energy, Bend Energy, Torsional Energy, van der Waals
Energy, Electrostatic Energy, Fitting Atomic Charges, The Fluctuating Charge
Model, Other Polarizable Models, Parameterizing the Force Fields and Heats of
Formation.
Advanced text on Jack Simons' book deals with the concepts and applications
of theoretical chemistry. It deals with foundational quantum mechanics, model
problems, and characterization of energy surfaces. The book also discusses the
practical tools and methods used in theoretical chemistry, like quantum
dynamics, statistical mechanics, and chemical dynamics. It primarily focuses on
the computational techniques that support both theoretical research in chemistry
and discuss topics such as electronic structure, chemical kinetics, relationship
between the theory and experimental data.
This guide is meant to
provide easy access for chemistry students to develop necessary mathematical
skills in a concise, at-hand fashion. It relates key mathematical concepts that
commonly are applied in chemistry, in algebra, calculus, and statistical
methods. The book presents mathematics as fundamental to solving problems in
chemistry and for grasping more sophisticated ideas in physical chemistry,
quantum mechanics, and molecular simulations. It is focused on enhancing the
student's ability to apply mathematical tools in both theoretical and
experimental contexts in chemistry.