This note covers the following topics: Fundamental Physical and Chemical
Conceptions, Older Electrochemical Views, The Laws of Avogadro and van't Hoff,
Vapour Pressure of Solutions, Boiling Point and Freezing Point of Solutions,
General Conditions of Equilibrium, Velocity of Reaction, Electrolytes,
Electrolytic dissociation, Conductivity of Electrolytes, Degree of Dissociation
and Dissociation Constant, Conclusions from the Dissociation Theory, Additive
Properties of Solutions, Equilibrium between Several Electrolytes, Calculation
of Electromotive Forces, Calculation of Electromotive Forces, Oxidation and
Reduction Elements, Secondary Elements, Electro-analysis, Development of Heat by
the Electric Current.
This lecture note provides an exposure into electrochemistry
with all its facets, ranging from the fundamentals like redox reactions and
Faraday's laws to advanced concepts in industrial electrochemistry. Topics range
from equilibrium electrochemistry to electrochemical cells, and from energy
conversion and storage systems like batteries and fuel cells, analytical methods
and sensors, to corrosion protection. The applications of electrochemistry are
also brought into display, be it in the fields of energy storage, corrosion
processes, or latest technologies. Anyone looking to learn about the
electrochemical basis of energy systems and environmental processes will find
this resource indispensable.
This book
makes a deep dive into the physical principles underlying electrochemical
processes, mainly focusing on the electrical double layer (EDL), solute
transport, and electrokinetics. In this text, there is coverage of models that
describe the EDL, such as the Gouy-Chapman-Stern model, and extends into more
complex phenomena such as combined mass transport and chemical reactions,
reverse osmosis, and electrodialysis. It also goes into the physics of
electrochemical systems at the microscopic level, both non-Faradaic and Faradaic
processes. The book applies to fields like bioelectrochemistry and environmental
chemistry and even briefly discusses some experimental methods and numerical
modeling used in electrochemical research.
This is an online resource which explores basic electrochemical
concepts regarding energy engineering. The text spans from principles in
electric charge and potential to thermodynamics, as well as the role of
electrode reactions. It elaborates on the theory behind electroactive layers and
modified electrodes, alongside governing electrochemical response principles.
Scanning probe methods, photoelectrochemistry, and spectroelectrochemistry
techniques are covered. This note grounds the reader in electrochemical
principles with a focus on the application of these principles in energy
systems, making it very useful for students and engineers interested in
electrochemical energy conversion and storage technologies.
The book undertakes a comprehensive review of electrochemical sensors with
applications in specific chemical and biosensing fields. It discusses all the
developments in electrochemical and electroanalytical methods and goes about
innovations and improvements in sensor design. In so doing, chapters by
international experts show the various sensor types used in environmental
monitoring, health-related applications, and industrial applications. In
general, this book is highly rich in theoretical principles and practical
applications, and thus makes it excellent reading for practitioners working in
the field of sensor technology and electrochemical analysis.
Author(s): Mohammed Muzibur Rahman and Abdullah Mohammed
Asiri